Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
EMBO Mol Med ; 16(3): 616-640, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383802

RESUMO

Haplo-insufficiency of the gene encoding the myelin protein PMP22 leads to focal myelin overgrowth in the peripheral nervous system and hereditary neuropathy with liability to pressure palsies (HNPP). Conversely, duplication of PMP22 causes Charcot-Marie-Tooth disease type 1A (CMT1A), characterized by hypomyelination of medium to large caliber axons. The molecular mechanisms of abnormal myelin growth regulation by PMP22 have remained obscure. Here, we show in rodent models of HNPP and CMT1A that the PI3K/Akt/mTOR-pathway inhibiting phosphatase PTEN is correlated in abundance with PMP22 in peripheral nerves, without evidence for direct protein interactions. Indeed, treating DRG neuron/Schwann cell co-cultures from HNPP mice with PI3K/Akt/mTOR pathway inhibitors reduced focal hypermyelination. When we treated HNPP mice in vivo with the mTOR inhibitor Rapamycin, motor functions were improved, compound muscle amplitudes were increased and pathological tomacula in sciatic nerves were reduced. In contrast, we found Schwann cell dedifferentiation in CMT1A uncoupled from PI3K/Akt/mTOR, leaving partial PTEN ablation insufficient for disease amelioration. For HNPP, the development of PI3K/Akt/mTOR pathway inhibitors may be considered as the first treatment option for pressure palsies.


Assuntos
Artrogripose , Doença de Charcot-Marie-Tooth , Neuropatia Hereditária Motora e Sensorial , Fosfatidilinositol 3-Quinases , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt , Roedores/metabolismo , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Serina-Treonina Quinases TOR
2.
Cell Metab ; 35(12): 2136-2152.e9, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37989315

RESUMO

The peripheral nervous system harbors a remarkable potential to regenerate after acute nerve trauma. Full functional recovery, however, is rare and critically depends on peripheral nerve Schwann cells that orchestrate breakdown and resynthesis of myelin and, at the same time, support axonal regrowth. How Schwann cells meet the high metabolic demand required for nerve repair remains poorly understood. We here report that nerve injury induces adipocyte to glial signaling and identify the adipokine leptin as an upstream regulator of glial metabolic adaptation in regeneration. Signal integration by leptin receptors in Schwann cells ensures efficient peripheral nerve repair by adjusting injury-specific catabolic processes in regenerating nerves, including myelin autophagy and mitochondrial respiration. Our findings propose a model according to which acute nerve injury triggers a therapeutically targetable intercellular crosstalk that modulates glial metabolism to provide sufficient energy for successful nerve repair.


Assuntos
Bainha de Mielina , Nervos Periféricos , Bainha de Mielina/metabolismo , Neuroglia , Células de Schwann/metabolismo , Regeneração Nervosa/fisiologia
3.
Nat Neurosci ; 26(7): 1218-1228, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37386131

RESUMO

Axonal degeneration determines the clinical outcome of multiple sclerosis and is thought to result from exposure of denuded axons to immune-mediated damage. Therefore, myelin is widely considered to be a protective structure for axons in multiple sclerosis. Myelinated axons also depend on oligodendrocytes, which provide metabolic and structural support to the axonal compartment. Given that axonal pathology in multiple sclerosis is already visible at early disease stages, before overt demyelination, we reasoned that autoimmune inflammation may disrupt oligodendroglial support mechanisms and hence primarily affect axons insulated by myelin. Here, we studied axonal pathology as a function of myelination in human multiple sclerosis and mouse models of autoimmune encephalomyelitis with genetically altered myelination. We demonstrate that myelin ensheathment itself becomes detrimental for axonal survival and increases the risk of axons degenerating in an autoimmune environment. This challenges the view of myelin as a solely protective structure and suggests that axonal dependence on oligodendroglial support can become fatal when myelin is under inflammatory attack.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Humanos , Bainha de Mielina/metabolismo , Axônios/metabolismo , Esclerose Múltipla/patologia , Encefalomielite Autoimune Experimental/patologia , Fatores de Risco
4.
Nat Commun ; 11(1): 4514, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908139

RESUMO

The velocity of nerve conduction is moderately enhanced by larger axonal diameters and potently sped up by myelination of axons. Myelination thus allows rapid impulse propagation with reduced axonal diameters; however, no myelin-dependent mechanism has been reported that restricts radial growth of axons. By label-free proteomics, STED-microscopy and cryo-immuno electron-microscopy we here identify CMTM6 (chemokine-like factor-like MARVEL-transmembrane domain-containing family member-6) as a myelin protein specifically localized to the Schwann cell membrane exposed to the axon. We find that disruption of Cmtm6-expression in Schwann cells causes a substantial increase of axonal diameters but does not impair myelin biogenesis, radial sorting or integrity of axons. Increased axonal diameters correlate with accelerated sensory nerve conduction and sensory responses and perturbed motor performance. These data show that Schwann cells utilize CMTM6 to restrict the radial growth of axons, which optimizes nerve function.


Assuntos
Axônios/metabolismo , Proteínas com Domínio MARVEL/metabolismo , Proteínas da Mielina/metabolismo , Nervos Periféricos/citologia , Células de Schwann/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Axônios/ultraestrutura , Microscopia Crioeletrônica , Masculino , Camundongos , Camundongos Knockout , Bainha de Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Condução Nervosa , Nervos Periféricos/metabolismo , Nervos Periféricos/ultraestrutura , Proteômica , Células de Schwann/citologia , Células de Schwann/ultraestrutura , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/ultraestrutura
5.
Development ; 146(21)2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719044

RESUMO

During the development of the peripheral nervous system, axons and myelinating Schwann cells form a unique symbiotic unit, which is realized by a finely tuned network of molecular signals and reciprocal interactions. The importance of this complex interplay becomes evident after injury or in diseases in which aspects of axo-glial interaction are perturbed. This Review focuses on the specific interdependence of axons and Schwann cells in peripheral nerve development that enables axonal outgrowth, Schwann cell lineage progression, radial sorting and, finally, formation and maintenance of the myelin sheath.


Assuntos
Axônios/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Bainha de Mielina/fisiologia , Neuroglia/fisiologia , Nervos Periféricos/embriologia , Células de Schwann/fisiologia , Animais , Diferenciação Celular , Linhagem da Célula , Separação Celular , Camundongos , Regeneração Nervosa , Nervos Periféricos/fisiologia , Sistema Nervoso Periférico , Ratos , Transdução de Sinais
6.
Nat Commun ; 10(1): 1467, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30931926

RESUMO

In contrast to acute peripheral nerve injury, the molecular response of Schwann cells in chronic neuropathies remains poorly understood. Onion bulb structures are a pathological hallmark of demyelinating neuropathies, but the nature of these formations is unknown. Here, we show that Schwann cells induce the expression of Neuregulin-1 type I (NRG1-I), a paracrine growth factor, in various chronic demyelinating diseases. Genetic disruption of Schwann cell-derived NRG1 signalling in a mouse model of Charcot-Marie-Tooth Disease 1A (CMT1A), suppresses hypermyelination and the formation of onion bulbs. Transgenic overexpression of NRG1-I in Schwann cells on a wildtype background is sufficient to mediate an interaction between Schwann cells via an ErbB2 receptor-MEK/ERK signaling axis, which causes onion bulb formations and results in a peripheral neuropathy reminiscent of CMT1A. We suggest that diseased Schwann cells mount a regeneration program that is beneficial in acute nerve injury, but that overstimulation of Schwann cells in chronic neuropathies is detrimental.


Assuntos
Doenças Desmielinizantes/genética , Neuregulina-1/genética , Comunicação Parácrina , Células de Schwann/metabolismo , Nervo Sural/metabolismo , Animais , Animais Geneticamente Modificados , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Diabetes Mellitus Tipo 1/complicações , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/patologia , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Atividade Motora , Proteínas da Mielina/genética , Neuregulina-1/metabolismo , Neurite Autoimune Experimental/genética , Neurite Autoimune Experimental/metabolismo , Neurite Autoimune Experimental/patologia , Neuroglia/metabolismo , Ratos , Receptor ErbB-2/metabolismo , Células de Schwann/ultraestrutura , Nervo Isquiático/lesões , Transdução de Sinais , Nervo Sural/ultraestrutura , Nervo Tibial
7.
Nat Commun ; 10(1): 1840, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992451

RESUMO

Michael W. Sereda was incorrectly associated with the Department of Cellular Neurophysiology, Hanover Medical School, Carl-Neuberg-Str. 1, 30625 Hanover, Germany. The correct affiliations for Michael W. Sereda are Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany and Department of Clinical Neurophysiology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany.

8.
PLoS One ; 14(1): e0209752, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30650121

RESUMO

The most common type of Charcot-Marie-Tooth disease is caused by a duplication of PMP22 leading to dysmyelination, axonal loss and progressive muscle weakness (CMT1A). Currently, no approved therapy is available for CMT1A patients. A novel polytherapeutic proof-of-principle approach using PXT3003, a low-dose combination of baclofen, naltrexone and sorbitol, slowed disease progression after long-term dosing in adult Pmp22 transgenic rats, a known animal model of CMT1A. Here, we report an early postnatal, short-term treatment with PXT3003 in CMT1A rats that delays disease onset into adulthood. CMT1A rats were treated from postnatal day 6 to 18 with PXT3003. Behavioural, electrophysiological, histological and molecular analyses were performed until 12 weeks of age. Daily oral treatment for approximately 2 weeks ameliorated motor deficits of CMT1A rats reaching wildtype levels. Histologically, PXT3003 corrected the disturbed axon calibre distribution with a shift towards large motor axons. Despite dramatic clinical amelioration, only distal motor latencies were improved and correlated with phenotype performance. On the molecular level, PXT3003 reduced Pmp22 mRNA overexpression and improved the misbalanced downstream PI3K-AKT / MEK-ERK signalling pathway. The improved differentiation status of Schwann cells may have enabled better long-term axonal support function. We conclude that short-term treatment with PXT3003 during early development may partially prevent the clinical and molecular manifestations of CMT1A. Since PXT3003 has a strong safety profile and is currently undergoing a phase III trial in CMT1A patients, our results suggest that PXT3003 therapy may be a bona fide translatable therapy option for children and young adolescent patients suffering from CMT1A.


Assuntos
Baclofeno/farmacologia , Doença de Charcot-Marie-Tooth/tratamento farmacológico , Naltrexona/farmacologia , Sorbitol/farmacologia , Animais , Axônios/metabolismo , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Combinação de Medicamentos , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Debilidade Muscular/metabolismo , Proteínas da Mielina/efeitos dos fármacos , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Condução Nervosa , Fosfatidilinositol 3-Quinases/metabolismo , Estudo de Prova de Conceito , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Células de Schwann/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
9.
Elife ; 62017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28470148

RESUMO

Impairment of peripheral nerve function is frequent in neurometabolic diseases, but mechanistically not well understood. Here, we report a novel disease mechanism and the finding that glial lipid metabolism is critical for axon function, independent of myelin itself. Surprisingly, nerves of Schwann cell-specific Pex5 mutant mice were unaltered regarding axon numbers, axonal calibers, and myelin sheath thickness by electron microscopy. In search for a molecular mechanism, we revealed enhanced abundance and internodal expression of axonal membrane proteins normally restricted to juxtaparanodal lipid-rafts. Gangliosides were altered and enriched within an expanded lysosomal compartment of paranodal loops. We revealed the same pathological features in a mouse model of human Adrenomyeloneuropathy, preceding disease-onset by one year. Thus, peroxisomal dysfunction causes secondary failure of local lysosomes, thereby impairing the turnover of gangliosides in myelin. This reveals a new aspect of axon-glia interactions, with Schwann cell lipid metabolism regulating the anchorage of juxtaparanodal Kv1-channels.


Assuntos
Axônios/enzimologia , Metabolismo dos Lipídeos , Lisossomos/metabolismo , Neuroglia/metabolismo , Doenças do Sistema Nervoso Periférico/fisiopatologia , Peroxissomos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/análise , Adrenoleucodistrofia/patologia , Animais , Axônios/ultraestrutura , Modelos Animais de Doenças , Humanos , Camundongos , Microscopia Eletrônica , Receptor 1 de Sinal de Orientação para Peroxissomos/deficiência
10.
Nat Neurosci ; 19(8): 1050-1059, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27294512

RESUMO

Schwann cell development and peripheral nerve myelination require the serial expression of transcriptional activators, such as Sox10, Oct6 (also called Scip or Pou3f1) and Krox20 (also called Egr2). Here we show that transcriptional repression, mediated by the zinc-finger protein Zeb2 (also known as Sip1), is essential for differentiation and myelination. Mice lacking Zeb2 in Schwann cells develop a severe peripheral neuropathy, caused by failure of axonal sorting and virtual absence of myelin membranes. Zeb2-deficient Schwann cells continuously express repressors of lineage progression. Moreover, genes for negative regulators of maturation such as Sox2 and Ednrb emerge as Zeb2 target genes, supporting its function as an 'inhibitor of inhibitors' in myelination control. When Zeb2 is deleted in adult mice, Schwann cells readily dedifferentiate following peripheral nerve injury and become repair cells. However, nerve regeneration and remyelination are both perturbed, demonstrating that Zeb2, although undetectable in adult Schwann cells, has a latent function throughout life.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Homeodomínio/genética , Bainha de Mielina/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo , Proteínas Repressoras/genética , Células de Schwann/metabolismo , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Proteína 2 de Resposta de Crescimento Precoce/genética , Camundongos Transgênicos , Nervos Periféricos/metabolismo , Células de Schwann/citologia , Fatores de Transcrição/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco
11.
Nat Med ; 20(9): 1055-61, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25150498

RESUMO

Duplication of the gene encoding the peripheral myelin protein of 22 kDa (PMP22) underlies the most common inherited neuropathy, Charcot-Marie-Tooth 1A (CMT1A), a disease without a known cure. Although demyelination represents a characteristic feature, the clinical phenotype of CMT1A is determined by the degree of axonal loss, and patients suffer from progressive muscle weakness and impaired sensation. CMT1A disease manifests within the first two decades of life, and walking disabilities, foot deformities and electrophysiological abnormalities are already present in childhood. Here, we show in Pmp22-transgenic rodent models of CMT1A that Schwann cells acquire a persistent differentiation defect during early postnatal development, caused by imbalanced activity of the PI3K-Akt and the Mek-Erk signaling pathways. We demonstrate that enhanced PI3K-Akt signaling by axonally overexpressed neuregulin-1 (NRG1) type I drives diseased Schwann cells toward differentiation and preserves peripheral nerve axons. Notably, in a preclinical experimental therapy using a CMT1A rat model, when treatment is restricted to early postnatal development, soluble NRG1 effectively overcomes impaired peripheral nerve development and restores axon survival into adulthood. Our findings suggest a model in which Schwann cell differentiation within a limited time window is crucial for the long-term maintenance of axonal support.


Assuntos
Doença de Charcot-Marie-Tooth/fisiopatologia , Modelos Animais de Doenças , Neuregulina-1/fisiologia , Animais , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Transgênicos
12.
J Cell Sci ; 123(Pt 14): 2369-74, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20551180

RESUMO

Here we report Drosophila Waharan (Wah), a 170-kD predominantly nuclear protein with two potential human homologues, as a newly identified regulator of endosomal trafficking. Wah is required for neuromuscular-junction development and muscle integrity. In muscles, knockdown of Wah caused novel accumulations of tightly packed electron-dense tubules, which we termed 'sausage bodies'. Our data suggest that sausage bodies coincide with sites at which ubiquitylated proteins and a number of endosomal and lysosomal markers co-accumulate. Furthermore, loss of Wah function generated loss of the acidic LysoTracker compartment. Together with data demonstrating that Wah acts earlier in the trafficking pathway than the Escrt-III component Drosophila Shrb (snf7 in Schizosaccharomyces pombe), our results indicate that Wah is essential for endocytic trafficking at the late endosome. Highly unexpected phenotypes result from Wah knockdown, in that the distribution of ubiquitylated cargos and endolysosomal morphologies are affected despite Wah being a predominant nuclear protein. This finding suggests the existence of a relationship between nuclear functions and endolysosomal trafficking. Future studies of Wah function will give us insights into this interesting phenomenon.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas Nucleares/metabolismo , Schizosaccharomyces/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Lisossomos/metabolismo , Músculos/metabolismo , Proteínas Nucleares/genética , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinação , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA